# -*- coding: utf-8 -*-
from sys import float_info as sflt
from numpy import maximum, minimum
from pandas import DataFrame, Series
from pandas_ta._typing import DictLike, Int, IntFloat
from pandas_ta.ma import ma
from pandas_ta.utils import (
    v_bool,
    v_mamode,
    v_offset,
    v_pos_default,
    v_scalar,
    v_series,
    v_talib
)


def smc(
    open_: Series, high: Series, low: Series, close: Series,
    abr_length: Int = None, close_length: Int = None, vol_length: Int = None,
    percent: Int = None, vol_ratio: IntFloat = None, asint: bool = None,
    mamode: str = None, talib: bool = None,
    offset: Int = None, **kwargs: DictLike
) -> DictLike:
    """Smart Money Concept

    This indicator combines several techniques in an attempt to identify
    significant movements that might indicate "smart money" actions.
    It uses candlestick patterns, moving averages, and imbalance calculations.

    Sources:
        * [tradingview](https://www.tradingview.com/script/CnB3fSph-Smart-Money-Concepts-LuxAlgo/)

    Parameters:
        abr_length (int): ABR length. Default: ```14```
        close_length (int): The ```close``` MA period. Default: ```50```
        vol_length (int): Volatility period. Default: ```20```
        percent (int): Percent of wick that exceeds the body. Default: ```5```
        vol_ratio (float): Volatility ratio (high) limit. Default: ```1.5```
        asint (bool): Returns as ```Int```. Default: ```True```
        mamode (str): See ```help(ta.ma)```. Default: ```"sma"```
        talib (bool): If installed, use TA Lib. Default: ```True```
        offset (int): Post shift. Default: ```0```

    Returns:
        (DataFrame): 7 columns
    """
    # Validate
    abr_length = v_pos_default(abr_length, 14)
    close_length = v_pos_default(close_length, 50)
    vol_length = v_pos_default(vol_length, 20)
    if close_length < abr_length:
        abr_length, close_length = close_length, abr_length
    _length = max(abr_length, close_length, vol_length) + 1

    open_ = v_series(open_, _length)
    high = v_series(high, _length)
    low = v_series(low, _length)
    close = v_series(close, _length)

    if open_ is None or high is None or low is None or close is None:
        return

    percent = v_pos_default(percent, 5)
    body_percent = 0.01 * percent
    vol_ratio = v_scalar(vol_ratio, 1.5)
    asint = v_bool(asint)
    mamode = v_mamode(mamode, "sma")
    mode_tal = v_talib(talib)
    offset = v_offset(offset)

    # Calculate
    body_high, body_low = maximum(open_, close), minimum(open_, close)
    body = body_high - body_low + sflt.epsilon
    close_ma = ma(mamode, body, length=close_length, talib=mode_tal)

    # Calculate imbalance sizes and percentages based on Average Bar Range (abr)
    abr = high.rolling(window=abr_length).max() - low.rolling(window=abr_length).min()
    top_imbalance = low.shift(2) - high
    btm_imbalance = low - high.shift(2)
    top_imbalance_pct = 100 * top_imbalance / abr
    btm_imbalance_pct = 100 * btm_imbalance / abr
    hld = high - low + sflt.epsilon
    high_volatility = hld > vol_ratio * ma(mamode, hld, length=vol_length, talib=mode_tal)

    btm_imbalance_flag = (btm_imbalance > 0) & (btm_imbalance_pct > 1)
    top_imbalance_flag = (top_imbalance > 0) & (top_imbalance_pct > 1)

    if asint:
        high_volatility = high_volatility.astype(int)
        btm_imbalance_flag = btm_imbalance_flag.astype(int)
        top_imbalance_flag = top_imbalance_flag.astype(int)

    _props = f"_{abr_length}_{close_length}_{vol_length}_{percent}"
    data = {
        f"SMChv{_props}": high_volatility,
        f"SMCbf{_props}": btm_imbalance_flag,
        f"SMCbi{_props}": btm_imbalance,
        f"SMCbp{_props}": btm_imbalance_pct,
        f"SMCtf{_props}": top_imbalance_flag,
        f"SMCti{_props}": top_imbalance,
        f"SMCtp{_props}": top_imbalance_pct,
    }
    df = DataFrame(data, index=close.index)

    # Offset
    if offset != 0:
        df = df.shift(offset)

    # Fill
    df.ffill(inplace=True)
    df.bfill(inplace=True)

    # Name and Category
    df.name = f"SMC{_props}"
    df.category = "momentum"

    return df
