
    i                     n    S SK Jr  S SKJr  S SKJrJrJr  S SKJ	r	J
r
Jr    SS\S\S\S	\S
\S\4S jjrg)    )log)Series)DictLikeIntIntFloat)v_offsetv_pos_defaultv_seriesNcloselengthbaseoffsetkwargsreturnc                    [        US5      n[        U SU-  S-
  5      n U c  g[        US5      n[        U5      nX R                  U5      R	                  5       -  nU* [        U5      -  [        U5      -  R                  U5      R	                  5       nUS:w  a  UR                  U5      nSU;   a  UR                  US   SS	9  S
U 3Ul        SUl	        U$ )a'  Entropy

This indicator attempts to quantify the unpredictability of the data,
or equivalently, its average information. It is a rolling entropy
calculation.

Sources:
    * [wikipedia](https://en.wikipedia.org/wiki/Entropy_(information_theory))

Parameters:
    close (Series): ```close``` Series
    length (int): The period. Default: ```10```
    base (float): Logarithmic Base. Default: ```2```
    offset (int): Post shift. Default: ```0```

Other Parameters:
    fillna (value): ```pd.DataFrame.fillna(value)```

Returns:
    (Series): 1 column

         Ng       @r   fillnaT)inplaceENTP_
statistics)
r	   r
   r   rollingsumr   shiftr   namecategory)r   r   r   r   r   pentropys          W/var/www/html/trading/venv/lib/python3.13/site-packages/pandas_ta/statistics/entropy.pyr   r   	   s    4 62&FUAJN+E}s#DfF 	f%))++ArCF{SY&//7;;=G {--' 6vh'6 6(#GL#GN    )NNN)numpyr   pandasr   pandas_ta._typingr   r   r   pandas_ta.utilsr   r	   r
   r    r!   r    <module>r'      sV      5 5 = =
 9=333-533"*3 3r!   