# -*- coding: utf-8 -*-
from pandas import DataFrame, Series
from pandas_ta._typing import DictLike, Int
from pandas_ta.ma import ma
from pandas_ta.trend.long_run import long_run
from pandas_ta.trend.short_run import short_run
from pandas_ta.utils import v_mamode, v_offset, v_pos_default, v_series
from .obv import obv



def aobv(
    close: Series, volume: Series, fast: Int = None, slow: Int = None,
    max_lookback: Int = None, min_lookback: Int = None,
    mamode: str = None, run_length: Int = None,
    offset: Int = None, **kwargs: DictLike
) -> DataFrame:
    """Archer On Balance Volume

    This indicator, by Kevin Johnson, attempts to identify OBV trends using
    two moving averages. It also attempts to identify if the moving averages
    are in a long_run or short_run. Finally, it also calculates the rolling
    maximum and minimum of OBV.

    Sources:
        * Kevin Johnson
        * [tradingview](https://www.tradingview.com/script/Co1ksara-Trade-Archer-On-balance-Volume-Moving-Averages-v1/)

    Parameters:
        close (Series): ```close``` Series
        volume (Series): ```volume``` Series
        fast (int): Fast MA period. Default: ```4```
        slow (int): Slow MA period. Default: ```12```
        max_lookback (int): Maximum OBV period. Default: ```2```
        min_lookback (int): Minimum OBV period. Default: ```2```
        run_length (int): Long and short run period. Default: ```2```
        mamode (str): See ```help(ta.ma)```. Default: ```"ema"```
        offset (int): Post shift. Default: ```0```

    Other Parameters:
        fillna (value): ```pd.DataFrame.fillna(value)```

    Returns:
        (DataFrame): 6 columns

    Note:
        * [long_run](../api/trend.md/#src.pandas_ta.trend.long_run.long_run)
        * [short_run](../api/trend.md/#src.pandas_ta.trend.short_run.short_run)
    """
    # Validate
    fast = v_pos_default(fast, 4)
    slow = v_pos_default(slow, 12)
    min_lookback = v_pos_default(min_lookback, 2)
    max_lookback = v_pos_default(max_lookback, 2)

    if slow < fast:
        fast, slow = slow, fast
    _length = max(max_lookback, min_lookback) + slow

    close = v_series(close, _length)
    volume = v_series(volume, _length)

    if close is None or volume is None:
        return

    mamode = v_mamode(mamode, "ema")
    run_length = v_pos_default(run_length, 2)
    offset = v_offset(offset)
    # remove length so it doesn't override ema length
    if "length" in kwargs:
        kwargs.pop("length")

    # Calculate
    obv_ = obv(close=close, volume=volume, **kwargs)
    maf = ma(mamode, obv_, length=fast, **kwargs)
    mas = ma(mamode, obv_, length=slow, **kwargs)

    obv_long = long_run(maf, mas, length=run_length)
    obv_short = short_run(maf, mas, length=run_length)

    # Offset
    if offset != 0:
        obv_ = obv_.shift(offset)
        maf = maf.shift(offset)
        mas = mas.shift(offset)
        obv_long = obv_long.shift(offset)
        obv_short = obv_short.shift(offset)

    # Fill
    if "fillna" in kwargs:
        obv_.fillna(kwargs["fillna"], inplace=True)
        maf.fillna(kwargs["fillna"], inplace=True)
        mas.fillna(kwargs["fillna"], inplace=True)
        obv_long.fillna(kwargs["fillna"], inplace=True)
        obv_short.fillna(kwargs["fillna"], inplace=True)

    _mode = mamode.lower()[0] if len(mamode) else ""
    data = {
        obv_.name: obv_,
        f"OBV_min_{min_lookback}": obv_.rolling(min_lookback).min(),
        f"OBV_max_{max_lookback}": obv_.rolling(max_lookback).max(),
        f"OBV{_mode}_{fast}": maf,
        f"OBV{_mode}_{slow}": mas,
        f"AOBV_LR_{run_length}": obv_long,
        f"AOBV_SR_{run_length}": obv_short
    }
    df = DataFrame(data, index=close.index)

    # Name and Category
    df.name = f"AOBV{_mode}_{fast}_{slow}_{min_lookback}_{max_lookback}_{run_length}"
    df.category = "volume"

    return df
