# -*- coding: utf-8 -*-
from numpy import isnan
from pandas import Series
from pandas_ta._typing import DictLike, Int, IntFloat
from pandas_ta.overlap import linreg
from pandas_ta.utils import (
    v_bool,
    v_drift,
    v_mamode,
    v_offset,
    v_pos_default,
    v_scalar,
    v_series
)
from pandas_ta.volatility import rvi



def inertia(
    close: Series, high: Series = None, low: Series = None,
    length: Int = None, rvi_length: Int = None, scalar: IntFloat = None,
    refined: bool = None, thirds: bool = None,
    drift: Int = None, mamode: str = None,
    offset: Int = None, **kwargs: DictLike
) -> Series:
    """Inertia

    This indicator, by Donald Dorsey, is the _rvi_ smoothed by the Least Squares
    MA.

    Sources:
        * Donald Dorsey, some article in September, 1995.
        * [sierrachart](https://www.sierrachart.com/index.php?page=doc/StudiesReference.php&ID=285&Name=Inertia)
        * [tradingview](https://www.tradingview.com/script/mLZJqxKn-Relative-Volatility-Index/)

    Parameters:
        high (Series): ```high``` Series
        low (Series): ```low``` Series
        close (Series): ```close``` Series
        length (int): The period. Default: ```20```
        rvi_length (int): RVI period. Default: ```14```
        refined (bool): Use 'refined' calculation. Default: ```False```
        thirds (bool): Use 'thirds' calculation. Default: ```False```
        mamode (str): See ```help(ta.ma)```. Default: ```"ema"```
        drift (int): Difference amount. Default: ```1```
        offset (int): Post shift. Default: ```0```

    Other Parameters:
        fillna (value): ```pd.DataFrame.fillna(value)```

    Returns:
        (Series): 1 column

    Note:
        * Negative Inertia when less than 50.
        * Positive Inertia when greater than 50.
    """
    # Validate
    length = v_pos_default(length, 20)
    rvi_length = v_pos_default(rvi_length, 14)
    _length = 2 * max(length, rvi_length) - min(length, rvi_length) // 2 - 1
    close = v_series(close, _length)

    if close is None:
        return

    refined = v_bool(refined, False)
    thirds = v_bool(thirds, False)

    if refined or thirds:
        high = v_series(high, _length)
        low = v_series(low, _length)
        if high is None or low is None:
            return

    scalar = v_scalar(scalar, 100)
    mamode = v_mamode(mamode, "ema")
    drift = v_drift(drift)
    offset = v_offset(offset)

    # Calculate
    if refined:
        _mode = "r"
        rvi_ = rvi(
                    close, high=high, low=low, length=rvi_length,
                    scalar=scalar, refined=refined, mamode=mamode
                )
    elif thirds:
        _mode = "t"
        rvi_ = rvi(
                    close, high=high, low=low, length=rvi_length,
                    scalar=scalar, thirds=thirds, mamode=mamode
                )
    else:
        _mode = ""
        rvi_ = rvi(close, length=rvi_length, scalar=scalar, mamode=mamode)

    if all(isnan(rvi_)):
        return  # Emergency Break

    inertia = linreg(rvi_, length=length)
    if all(isnan(inertia)):
        return  # Emergency Break

    # Offset
    if offset != 0:
        inertia = inertia.shift(offset)

    # Fill
    if "fillna" in kwargs:
        inertia.fillna(kwargs["fillna"], inplace=True)

    # Name and Category
    _props = f"_{length}_{rvi_length}"
    inertia.name = f"INERTIA{_mode}{_props}"
    inertia.category = "momentum"

    return inertia
