# -*- coding: utf-8 -*-
from numpy import sqrt
from pandas import Series
from pandas_ta._typing import DictLike, Int
from pandas_ta.overlap import sma
from pandas_ta.utils import v_offset, v_pos_default, v_series



def ui(
    close: Series, length: Int = None, scalar: Int = None,
    offset: Int = None, **kwargs: DictLike
) -> Series:
    """Ulcer Index

    This indicator, by Peter Martin, attempts to quantify downside volatility
    with a Quadratic Mean.

    Sources:
        * [tangotools](http://www.tangotools.com/ui/ui.htm)
        * [tradingtechnologies](https://library.tradingtechnologies.com/trade/chrt-ti-ulcer-index.html)
        * [wikipedia](https://en.wikipedia.org/wiki/Ulcer_index)

    Parameters:
        close (Series): ```close``` Series
        length (int): The period. Default: ```14```
        scalar (float): Bands scalar. Default: ```100```
        offset (int): Post shift. Default: ```0```

    Other Parameters:
        everget (value): Use Evergets' TradingView SMA.
            Default: ```False```
        fillna (value): ```pd.DataFrame.fillna(value)```

    Returns:
        (Series): 1 column
    """
    # Validate
    length = v_pos_default(length, 14)
    scalar = v_pos_default(scalar, 100)
    close = v_series(close, 2 * length - 1)

    if close is None:
        return

    offset = v_offset(offset)

    # Calculate
    highest_close = close.rolling(length).max()
    downside = scalar * (close - highest_close) / highest_close
    d2 = downside * downside

    everget = kwargs.pop("everget", False)
    if everget:
        # Everget uses SMA instead of SUM for calculation
        _ui = sma(d2, length)
    else:
        _ui = d2.rolling(length).sum()
    ui = sqrt(_ui / length)

    # Offset
    if offset != 0:
        ui = ui.shift(offset)

    # Fill
    if "fillna" in kwargs:
        ui.fillna(kwargs["fillna"], inplace=True)

    # Name and Category
    ui.name = f"UI{'' if not everget else 'e'}_{length}"
    ui.category = "volatility"

    return ui
